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New solutions of the wave equation by reduction to the 
heat equation 

P Basarab-Horwathts, L Barannykf and W I Fushchychtll 
t Mathematics Department, University of Linktiping, 581 83 Linkeping, Sweden 
$ Mathematics Department, Poltava Pedagogical Instime Poltava Ukraine 

Received 9 December 1994, in final form 5 May 1995 

Abstract. In this article we make a new connection between the linear wave equation and 
the linear heat equation. In this way we are able to conshlld new solutions of the linear wave 
equation, using symmetries and conditiond symmevies of the heal equation. 

- 1. Introduction 

The linear wave equation in (1 fn)-dimensional timespace R(1, n) 

is fundamental~to mathematical physics: it describes spinless mesons when n = 3, and is 
the paradigm of a hyperbolic equation. Its symmetry properties are also known [l, 21, and 
one has the following result concerning the Lie point symmetries of (1): 

Proposition 1. The maximal Lie point symmetry algebra of equation (1) has basis 

P, = a, .I,” = +a, - x.a, 

P, = a, I = ua,, J , ~  =+a, - X,a, 

I = ua, 

when m # 0, and 

D = xW, K, = 2+D - x%, - 2x,ua. 

when m = 0, where 

(3) 

The symmetries can be used to build ansatzes for exact solutions of (I), which then reduce 
the equation to a partial differential equation with fewer independent variables or even 
to an ordinary differential equation [1,2]. These ansatzes and reductions are based on a 
subalgebra analysis of parts of the symmetry algebra. The reduced equations do not always 
have nice symmetry properties, so that a full analysis of the resulting equations has not 
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been carried out to this date. In this article we study a reduction which, as far as we know, 
has not been done before, and which links up solutions of the wave equation (1) in R(1, n) 
with those of the linear heat equation in R(1, n - 1). We consider equation (1) with real U: 
the complex case with nodinearities is studied in [3]. 

In [1,2,4], the reduction of the nonlinear wave equation 

Ou = F(u) ( I Q )  

is considered and its reduction (to equations with a smaller number of independent variables) 
is studied with respect to the following algebras: AP(I, n )  = (P,, J,J when F(u)  
is arbitrary; AP(1, n) = (P,, J,”, D) when F(u) = kup with p an arbitrary constant; 
AC(l,3) = (P+, J,.. D, K,) when F ( u )  = hu3. 

The linear equation (l), unlike the nonlinear one (la), admits a new symmetry 
operator: I = ua,, so that (1) is invariant under the algebras (P,, .Iwy, I) for m # 0 
and (P,, .IlLy, I, D, K,) form = 0. However, until now, reductions of (1) have been based 
only on subalgebras of (P,, JSv} and (PW, .IWv, D, K,). In this paper we take the subalgebra 
(P,, I) in both cases, it allows us to reduce the hyperbolic equation (1) to the parabolic 
heat equation and, in this way, we are then able to exploit the exact solutions of the heat 
equation to consmct solutions of the wave equation.’ This is the central result of our paper. 
It may at first sight seem rather strange that a Poincar6-invariant equation is reducible (with 
an appropriate ansatz) to one that is Galilei-invariant. However, it is known (see [SI) that 
the Galilei algebra can be found within the Poincar6 algebra, so that one may even expect 
the original equation to ‘contain’ a Galilei-invariant one. 

2. Reduction to the heat equation 

In this paper we limit ourselves to (1 + 3)-dimensional timespace R(l,3), but the 
generalization of our result to higher dimensions is obvious as the reduction remains the 
same. 

We now turn to the conshuction of the ansatz which reduces (1) to the heat equation. 
Equation (1) is invariant under the operators P,, I and is therefore also invariant under any 
constant linear combination of them: 

+a, + kua, 

where k,  r p  are constants. This latter operator then gives us the following invariant-surface 
condition 

?up = ku 

which gives the Lagrangian system 

and it is not difficult to show that this, in tum, is equivalent to the Lagrangian system 
d(cx) du 

c-c , ku 
_.=_ (4) 

for any constant four-vector c, with cx = c,xW, CT = cpt,. Choose now t so that 
tZ = -c,-c, = 0, namely -c is light-like, and choose four-vectors @, 8, E so that 

82 = 82 = -1 m2 
€2 = -- 

k2 
rp = rS = @S = pc = S E  = 0 r6 = 1. (5) 
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On choosing c in (4) to be 5 ,  f i ,  8 ,  c we obtain the system 

d(sx) d@x) d(Sx) d ( a )  du 
0 0 ' -  0 1 ku 
- ~ ~ - ~ - - - .  - 

The general integral of (6) is given by 

U = ek"'v(zx, f i x ,  SX) (7) 
where U is a smooth function of its arguments (we assume that all our operations are smooth, 
at least locally). Treating (7) as an ansatz for equation (I), we find, on substituting (7) into 
(l), writing t = zx,  y1 = ox, y2 = Sx, performing some elementary computations and 
using (5), that U satisfies the linear heat equation (we have chosen k = 4 for convenience) 

The Cauchy problem for equation (8) is well posed for t > 0, and (8) has solutions 
which are singular for t = 0. This then leads to a similar problem for the wave equation 
when zx = 0, which is a characteristic (z2 = 0), so that the initial-value problem for (8) at 
t = 0 is related to the initial-value problem of (1) on a characteristic. This latter is known 
as Goursat's problem, and has been studied in [12], to which we refer the reader for more 
details. 

The linear heat equation in (1 + 1) spacetime dimensions has been studied extensively: 
its symmetry properties [2, 6,7] and its conditional symmetries (also known as non-classical 
symmetries [6], Q-conditional symmetries in [2]) are known. The symmetry algebra of the 
linear heat equation in 1 +2  timespace can be found in [7] but for the sake of completeness, 
we give it in the following proposition. 

Proposition 2. The maximal Lie point symmetry algebra of equation (8) is the extended 
Galilei algebra AG3(1,2) with a basis given by the following vector fields 

G. =fay. - ;y.ua, M = -pa, 1 T = a, 
J~~ = Ylan - Y2ay, 
~ = t ~ a , + r y , a , ,  +ty2an - ( z++~y :+y ; ) )~a~ .  

P, = -aym 
D = zta, + Ylayl  + Yzan - va, (9) 

Remark I .  We have not included the symmetry v + U + v1 where U, is an arbitrary solution 
of (8). 

If we had considered equation (1) in R(l, 4). then we would have obtained the linear 
heat equation in 1 + 3 dimensions with OUT reduction. Note also that there is a Lie-algebraic 
reduction of (1) in R(l,4) to equation (1) inR(1,3), which amounts to omitting dependency 
on one of the spatial variables. In this way, we are able to use the wave equation in R(l,4) 
as a bridge in constructing solutions of the wave equation in R(1,3) from those of the heat 
equation in 1 + 3 dimensions. 

The invariance of equation (8) under the group Gz(1,Z) which the above algebra 
generates then allows us ta obtain a nine-parameter family of exact solutions whenever 
one solution is given. 

The commutation relations of the algebra (9) are 

[pa, GbI = &6M [PI, 5121 = p2 [p2, J1d = -PI 
[Pa,  D] = Pa 
Ice, Gbl = 0 [D, Gal = 0, [T, Gal = Pa [S, Go1 0 
[ J I ~ ,  TI = [JIz. D] = [ J I z ,  SI = 0 [T, SI = D 

[Pa.  SI = G, [Pa,  TI = 0 [M, XI = 0 for all X E AG3(2) 

[T, D] = 2T [D, SI = 2s. 
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Clearly, we see that the subalgebra (Pa, G,, M), a = 1,2 is an ideal (maximal and solvable, 
and therefore the radical of the algebra [S, 91). Our algebra is seen to be the semi-direct 
sum (Jiz, S, T ,  D) + (Pa, G,, M). In tum, we can verify that (S, T, D) is a semi-simple 
Lie algebra which we can take as being a realization of ASL(2, B), the Lie algebra of 
SL(2, B). To see this, we take X I  = iD, X Z  = f ( i "  - S), X3 = a(T + S) as a new basis, 
and obtain the commutation relations of SL(2, B): 

1x1, Xzl = -x3 [XZ,  X3l = XI [X3 .X11=  xz. 

Thus we obtain 

(JIz, S, T, D) = (312) @ (S, T, D) = (512) @ ASL(2.B) 

which is the Lie algebra of O(2) @ SL(2, R). 
The elements of the group Gz(l,2) are considered as transformations of a space with 

local coordinates (t .  y1, y2, U), and points with these coordinates are mapped to points 
(t', yi , yi, U'). The finite transformations defining this action are obtained by solving the 
corresponding Lie equations. For the subalgebra (512, S, T ,  D) = (312, XI, X2, X 3 )  we 
solve the Lie equations as follows: 

t'lp=O = t Y ; G O  = Y. u'lp=o = U  

which gives the finite transformations 

t' = t 

Then we have the corresponding equations for X I ,  X Z ,  X 3 .  

y; = y1 cosp - yzsinp y;. = y1 sinp+y;cosp U' = U. 

(y: + y,") sinh v2 

4(t sinh uz +cosh vz) U' = u(t sinh w2 +cosh u2) exp 

$cos u3 +sin y Yo 
cos u3 - t sin vg 

x ,  : t' = 
= c o s y  -isinus ( (Y:+ ~ 3 s i n ~ 3  ) U' =  COS 13 - t sin w3)  exp -  COS y - t sin w3) 

' 

Thus, we see that the action of the group generated by ( J l z ,  S, T, D )  can be given in 
the form 

ylscosp-y2~s inp  y~ sin p + yzcos p 
K t  + U  "= K t + U  

Yl = 
, t t + v  t =- 

K t  + U 

with <U - VK = 1, and E = f l  corresponds to the possibility of space reflections under 
which (8) is manifestly invariant (the goup O(2) has two components). The parameters <, 
v, K ,  U correspond to the action of SL(2, B). 
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Solving the Lie equations defined by each of the other infinitesimal generators in (9), 
we obtain finite transformations such that ( t ,  y1, yz, U) + (t’, yi, yi, U‘) as follows: 

G; : t’ = t yi = / ~ ; t  + yi y,! = y, for j # i 

u‘=uexp (Xf -- - t + p ; y i  1) 
Pi : z’ = t yi = yi - hi y! = yj for j # i U’ = U 

M : t‘ = t 
J 

yi = yi U’ = vexp(-$). 

3. Subalgebras and ansatzes 

Having obtained and discussed the symmetry algebra of equation (8). we now pass to listing 
the subalgebras of AGz(1,Z) which are inequivalent up to conjugation by Gz(l, Z), and 
giving the corresponding reduced equations. In those cases where it is possible, we integrate 
these equations. The method of obtaining subalgebra up to conjugation is described in 
14,101; here-we simply present our results. The reductions we have obtained have been 
verified with MAPLE. 

3.1. Reduction to ordinary differential equations by two-dimensional subalgebras 

Here we list the subalgebras, with restrictions on any parameters entering into the algebra, 
and then we give the corresponding ansatz and finally the differential equation which arises, 
with i ts  solution. In all the cases, we can take the reai and imaginary parts of the solutions, 
as the reduced equations are linear. This is understood when complex arguments appear. 

3.1.1. 

c(0) 0 = Y l  (P2,T+aM)(a=O,fl): = e-w 
@ + j ap  = 0. 1 

Integrating this reduced equation, we find the following cases 

p = C 1 0 + C 2  fora=O 

(b = C,exp (>) - +Czexp ( -- >) 
p = ClCOS (L -+cz ) 

forcv=-1 

fora=l. 

From these we obtain the following exact solutions of (8): 

U = C1y2 + CZ fora = 0 

U =e‘/’ ( cl exp ( ‘ j+czexp(-s j j  - fora=-1 

with C1, CZ being arbitrary consknts. 
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3.1.2. 
-(=+3/z)(0(w) = - YZ (D + (zor + 1)M, T)(a E R) : U = y1 

Y1 

(02 + I)@ + (5 + 2a)ofj + (f + E ) ( ;  + 01)p = 0. 

For 01 = -z we have 2 

(0 = c1w + c,. 
If 01 = -2 then 2 

rp=C1arctanw+C2. . 

For a # -2, -; then 

(0 = CI(1 + w  * ) - ( a /2+3 /4 )~~~( (2  +or)arctano+~z) .  

U = c l y 2  + Csy, 

The exact solutions being: 

01 = - 5 5 

YZ 
Y1 

v=C1arctan-+CCz , 0 1 = - - 2  2 

01#-2 -5 U = cl(y: + y3-"/2+3'4) cos (2 + 01) arctan - + c, 2 '  2 '  ( Y1 y2 1 
3.1.3. 

YZ w = 2 (D + (401 + 1)M, P2)(a E R) : U = t-@+3/4) q(w)  
t 

404 + (2 +U)@ + ($ + 0r)q = 0. 
If we make the transformation w + ( = -$ in this ODE, we obtain 

((0" + (4 - ()p" - (01 + = 0 
where (0' denotes differentiation with respect to e. The solutions of this equation are given 
in terms of the Pochhammer-Barnes confluent hypergeometric function (see for example 
vol 1, ch 6 of [ll]) 

with b # 0 and where (U). = u(u + I)(u + 2) .  . (U + n - I), n > 1. We find then [I I] 
q = c 1 4 ( 0 1 + ~ ; f ; - ~ O ) + C ~ ( - a W ) ' / ~ 4 ( O I + ~ ' ~ ' - ~ 0 ) .  4' 2' 

Thus we find the exact solution 

3.1.4. 

(GI. S) : 

which integrates to give the exact solution 

1 
2w 

q(o) o=t @ + - q = O  
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3.1.5. 

161 - ~ ' p  =O. 
To treat this ODE, first write 'p = ,hJTJ$(z) with I = w312/6. Then JTJ$ satisfies 

which is the equation for the Bessel function J*1/3(iz) (these two are linearly independent 
solutions) (see vol 2, section 7.2.2 of [ 111). Consequently, we have 

as an exact solution of the heat equation. 

3.1.6. 
(JIZ f f f D  - a(4p + 2 ) M ,  T) (Or > 0, @ E B) 

U = (y: + y:)@q(w) 

(a2 + l)+ + 4j3@ + 4p'p = 0. 

for j3 = 0 

o = aarctan 

Integrating this equation. we obtain 
'p = C l W  + c, 

and 

9 = c, exp (-*) cos (* 1 +a2 + ~ 2 )  for B # 0. 
1 +a2 

These then give us the exact solutions 

+ y:) +cZ for j3 = 0 1 
U = c1 (y: + y,')P exp -- ) co, (= + c2) ( for j3 # o 

1 +a* I +a2 
where 

3.1.7. 
( 4 2  + Z a M ,  D - (48 + 2)M)(or > 0, j3 E R) 

U = t@ exp aarctan - q(w)  w = - 
. .  

Y: + Y2' ( 3 t 

This equation gives~ 
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Its solutions can be given in terms Of Whittaker functions W(k;  m; z )  (see vol 1, ch 6, 
pp 248-51 of 1111) and one obtains 

( . iff 2 4  "1 e-"/& 
CO = -W - (p  + lp); -; - Ji3 

and hence 

-@+1/2);--,- 
2 4t 

3.1.8. 

( A 2  + b M ,  T + BM) (or 2 0, p = 0, f l )  

u = exp or arctan - Y1 - -) Bt q(o) ( Y2 2 w = y t  + y2 2 

We have the following cases: 
'p = Cl + C210gw 

'p = ~1 cos (-5 logw+ cz) 

,=Jim(@$ foror>o,p#o.  

+ yi) + cZ) 

for a = B  = O  
cf 

fora p 0, B = O  

Consequently, we have the following solutions of (8) 

U = C I +  CZ log(y: + y t )  , for or = p = o 
for a + 0, p = o 

for or > 0, p # 0. 

3.1.9. 

(512 + S + T + b M ,  GI + P z ) ( ~ r  E R) 

@ + (or + 0 2 ) q  = 0. 

This equation is known as the Weber equation. Its solutions are the real and imaginary parts 
of the functions 

D-,,&(I + i)o) 
where D,(z) are the Weber-Hermite (parabolic cylinder) functions (vol2, ch 8, section 8.2 
of [ll]). This gives the following exact solutions of (9): 
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and the real and imaginary parts of this function give us exact solutions of the heat 
equation (9). 

3.1.10. 

(512 + Z a M ,  s + T + 2pM) (or > 0, p E R) 

-p arctan t + a arctan - - Y: + r: 
yz 4(t2+ 1) t Z  + 1 

U=-  

The solutions of this equation can be given in terms of Whittaker functions [ 111, and we 
obtain the following exact solutions of the heat equation as a result: 

In the above cases we have been able to describe exact solutions of (8) in terms of 
elementary functions or confluent hypergeometric functions. Using the notation introduced 
in equations (8) and (7), we are thus able to construct s’uikingly new exact solutions of the 
linear wave equation (1). 

3.2. Reduction to partial differential equations by one-dimensional subalgebras 

Here we list the subalgebras, the relevant parameters, ansatzes and reduced equations, 
without constructing their exact solutions. We use to denote the partial derivative with 
respect to w1, and ‘pzz means the second derivative with respect to UZ,  and so on. 

3.2.1. 

(PZ) : U = $9(w1,02) ~ U1 = t U2 = y1 91 = PZZ. 

This is the heat equation in 1 + 1 spacetime dimensions. The symmetries and conditional 
symmetries of the heat equation are well known. A discussion of these can be found in [6] 
and in appendix 7 of [2]. 

3.2.2. 

(Gl + PZ) : ~ ( u ~ , u z )  01 = f  @ = y 1  + t y z  

3.2.3. 

( T + a M ) ( a = O , f l ) :  U =exp -- q(01,wz) 01 =y1 0 2  = YZ ( 3 
$91, + M Z  + $Y$9 = 0. 
This equation is the Laplace equation for a = 0. Solutions can be obtained by using 
separation of variables. 
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3.2.4. 

2 (T + Cl) : go(wl,w2) o 1 = t  -2y1 0 2  = Y2 

4ql1 + 'pn - f O l p  = 0. 

3.2.6. 

3.2.7. 



New solutions of the wave equation by reduction to the heat equation 5301 

3.2.10. 

(S+ T +2ffM)(ff ER) 

Y2' 0 2  = - Y: 01 = ~ 

t 2 +  1 t2+ 1 

3.2.11. 

(1 - t%Yl + tY2Y [ 4 t ( t2+  1)2 4t 
U = ( t2  + I)-'/' exp 

tY1 - YZ 
0 2  = - ='a arCtanf Y1 + tY2 

t2+ 1 t2+ 1 
0, = - 

4. Some conditional symmetries of the 2 + 1 heat equation 

In this section we give the conditional symmetries of equation (8). The defining equations 
are nonlinear coupled partial differential equations, which we do not solve, except in one 
case, leaving the others for consideration in a later publication. We have the following 
result 

Proposition 3.. Equation (8) is conditionally invariant under 

when the coefficients satisfy the following conditions: 

(i) to = I : ti, = g> CA = -cy, q = A v + B  

where tl, c2, A ,  B are functions of t ,  y1. y2 and satisfy the system 

+ 2t1$, + 2 4 ,  = 0 6; f X 2 t i  + 2A, = 0, 

A,  Ay,y, + A,, - 2 A t i  B: = Bylyl + Byty2 - 2 B f i .  

' - 2 2  q = A u + B  (ii) to = 0,6' = 1 : EY2 - C Y ,  

where t2, A ,  B are functions o f t ,  y l ,  y z  and satisfy the system 

= 0 d - 6&, - 4, + X i C i  - 2h2Ay, - 
At = Ay,y, i- A,, f 2 A A y ,  - 2Ay3G;, 
B: = BYly, + B,, + 2BAy, - 2B,c:,. 

(iii) to = = 0, c2 = t : q = AU + B 

where A is afunction oft, y2 only, and B is a function oft, y l ,  y2 and satisfy the,equations 

Ai = A,, + 2AA, Bf = By,y, + By?, + 2BA,. 
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As is clear in the above three cases, the systems of equations involved are highly nonlinear, 
and cannot be solved in general. However, the equation for the function A in case (iii) is 
recognized to be the Burgers equation. This equation can be linearized by the Hopf-Cole 
transformation A = w,/w where w is a solution of the heat equation w, = wBy? (see for 
example [2]) .  The solutions obtained in this way can then be used to build ansatzes first for 
the 2 + 1 heat equation (8) and then, in turn, the linear wave equation (l), using the ansatz 
(7). 

Ansatzes can also be obtained from the symmetry algebra of the Burgers equation. 

(10) 

Indeed, the symmetry algebra of the equation 

A, = A,, + 2AA, 

is generated by the operators 

a,, a%, 2ta, - a A  

tza, +ty2a, - (tA + f) aA. 
2t a, + y2ay2 - A ~ A  

The operator (11) gives the ansatz 

which gives, on substituting into (lo), the equation 
4 + 2 * + = 0  

for $,, where the dot denotes differentiation with respect to the variable w = yz/t. This 
equation readily integrates to 

+ + + Z = c  

c = o :  $, = t /Wt + y2) (13) 

where c is a constant. This gives us three cases: 

where k is a constant, 

c =.',a =- 0 : 
= a  (lexp (F) - 1) / (lexp (T) + 1) (14) 

with I # 0 a constant. 

c = - a  2 , a > o :  $, = -atan(aZ+ $). (15) 

Substituting these into (12), one obtains exact solutions of (10). We use these exact solutions 
for A together with theorem 3 (ii) (with B = 0) as follows. The equation (8) is conditionally 
invariant under 

a, + Aua, (16) 
and this gives us an ansatz for U to be substituted inta ( E ) ,  and this, in turn, gives us an 
exact solution of (8) which, when we combine it with (7), gives an exact solution of (1). 
We list the results of these stages for each of the equations (13)-(15). 

The ansatz for U from (13) is 

U = (kt  + Y ~ ~ X P ( - Y : / ~ ~ ) W ,  YI) 
where @(t,  y ~ )  satisfies 

at =a,,,, - $0 
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and consequently we find that U is given by 

U = (kt + y2)exp(-y;/4f - 3 t / 2 ) W ,  y1) (17) 
where Y(t, yl) satisfies the (1 + 1)-dimensional heat equation. 

The ansatz for U from (14) is 

,, = eal/t [Lexp(-(yz - ~ a ) ~ / 4 t )  + exp( -b  + W'/~OI@(~ ,  y t )  
where @(t, y1)  satisfies 

and using this we eventually find that U is given by 
1 

U = -[lean/' +e-'"/'] exp(-(4a2 + y 3 / 4 t ) ~ ( t ,  y j )  
f i  

where Y(t, y,) satisfies the (1 + 1)-dimensional heat equation. 
The ansatz for U from (15) is 

u =cos (a2 + y )  exp(-yz/4t)~(t. y1) 

where @(t, y1) satisfies 

so that we obtain 
1 

u = -cos (az + y )  exp(-(4a2 + y i ) / 4 t ) ~ ( t ,  y1) 
f i  

where Y(t, y1)  satisfies the (1 + 1)-dimensional heat equation. 

(1): 
We can now combine equations (17)-(19) with equation (7) to obtain new solutions of 

where Y(t, x )  is any solution of the (1 + 1)-dimensional heat equation. 
One can, in principle, perform the same procedure for the other conditional symmetry 

operators defined in theorem 3; however, it is first necessary to obtain some exact solutions 
of the systems. These latter are quite nonlinear and require further treatment, and we leave 
this to a future publication. 

5. Conclusion 

We have been able to give a new reduction of the linear wave equation in 1 + 3 timespace 
dimensions to a linear heat equation in 1 +2 timespace dimensions, that is, a reduction of a 
hyperbolic equation to a parabolic one. The further reductions of this heat equation by two- 
dimensional subalgebras (inequivalent under the action of Gz(l,2)) to ordinary differential 
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equations leads to exact solutions in terms of special functions. mese are of interest in 
their own right. Conditional symmetries can also be used to obtain new exact solutions. 
Using these solutions of the heat equation, one can construct new solutions of the linear 
wave equation. In concluding, we remark that the complex nonlinear wave equation 

o\v + F(IYI, aKi\viaqvi)q = o 
where F is an arbitrary smooth function of its arguments and Y is a complex function, can 
be reduced by the same ansatz as (7) (but with k imaginary) to a nonlinear Schrodinger 
equation with the same nonlinearity. Some of these equations admit soliton solutions. We 
report on these results in [3]. 

Acknowledgments 

We would like to thank the referees for valuable comments on an earlier version of this 
article and for their eagleeyed observation of mistakes. W I Fushchych thanks the Swedish 
Institute and the Swedish Natural Sciences Research CounciI (NFR) for financial support, 
and the Mathematics Department of Linkoping University for its hospitality. P Basarab- 
Horwath thanks the Wallenberg Fund of Linkoping University and the Tornby Fund for 
travel grants, and the Mathematics Institute of the Ulcrainian Academy of Sciences in Kiev 
for its hospitality. 

References 

[l] Fushchich W I and Serov N 11983 Symmetry and exact solutions of the nonlinear multi-dimensional Liouville, 
d'Alembert and eikonal equations 1. Phys. A: Math. Gen. 16 364S58, 

[2] Fushchich W I, Shtelen W M and Serov N I 1993 Symmetry Analysis and Exact Solutions of Equations of 
Nonlinear Mathemtical Physics Dordrecht: Kluwer) 

[3] Basanb-How& P, Fushchich W I and Barannyk L F 1994 Exact solutions of the nonlinear wave equation 
by reduction to the nonlinear SchrOdinger equation Preprht Linkoping 

[4] Fushchich W I, Barannyk L F and Barannyk A F 1991 Subgroup Analysis ofthe Galilei andPoincar6 Groups 
and Reduction of Nonlinear Equations (in Russian) Wgl. Transl.~in preparation) (Kiev: Nauka Dumka) 

[5] Fushchych W 1 and Nikitin A G 1994 Symmetries of Equations of Quantum Mechanics (New York Allerton 
Press Inc) 

[6] Bluman G W and Cole J D 1969 The general similarity solution of the heat equation J.  Math. Mech. 18 
102542 

[7] Bluman G W and Kumei S 1989 Symmetries ond Differential Equations (New York: Springer) 
[a] Jacobson N 1962 Lie AI#ebrar (New Ywk Interscience) 
[9] Naimark M and Stem A 1982 Theory of Gmup Representations (Berlin: Springer) 
[IO] Patera I, WinremiU P and Zassenhaus H 1975 Continuous subgroups of the fundamental groups of physics. 

[ll] Erd6lyi A, M3gnus W, Oberhetlinger F and Tncomi F G 1953 Higher Transcendental Functions (Eaternun 

1121 Borhardt A A and Kaxpenko D la 1984 The characteristic problem for tbe wave equation with mass 

I. 1. Math. Phys 16 1597414 

Manuscript Project) (New York McGraw-Hill) 

Differential Equations 20 23945 (Engl. Transl.) 


