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New solutions of the wave equation by reduction to the
heat equation
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Abstract. In this article we make a new connection between the linear wave equation and
the linear heat equation. In this way we are able to construct new solutions of the linear wave
equation, using symmetries and conditional symmeiries of the heat equation.

1. Introduction

The linear wave equation in (1 + #)-dimensional timespace R(1, 1)

2y 3 Fu
D =__,,,____...——-=—m2u 1
¢ ax?  8x? 3x2 @

is fundamental to mathematical physics: it describes spinless mesons when n = 3, and is
the paradigm of a hyperbolic equation. Its symmetry properties are also known [I, 2], and
one has the following result concerning the Lie point symmetries of (1):

' Proposition 1. The maximal Lie point symmetry algebra of equation (1) has basis

P, =3, I=us, Tuw = X8 — X,8, , )
when m 0, and

D = xy'a“ Ku_ = EX#D - xzaﬂ - 2x‘uuau
when m = 0, where
a3
“=5 BT
guv = diag(l, -1,...,=1) wov=0,1,2,...,n

— v
Xp = ZuX

The symmetries can be used to build ansatzes for exact solutions of (1), which then reduce
the equation to a partial differential equation with fewer independent variables or even
to an ordinary differential equation [1,2]. These ansatzes and reductions are based on a
subalgebra analysis of parts of the symmetry algebra. The reduced equations do not always
have nice symmetry properties, so that a full analysis of the resulting equations has not
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been carried out to this date. In this article we study a redoction which, as far as we know,
has not been dane before, and which links up solutions of the wave equation (1) in R(1, n)
with those of the linear heat equation in R(l, » — 1). We consider equation (1) with real u:
the complex case with nonlinearities is studied in [3].

In [1,2,4], the reduction of the nonlinear wave equation

Clee = Flu) (la}

is considered and its reduction (to equations with a smaller number of independent variables)
is studied with respect to the following algebras: AP(l,n) = {(P,, J,,) when F(&)
is arbitrary; Aﬁ(l,n) = (Py, Jy, D) when F(u) = Auf with p an arbitrary constant;
AC(1,3) = {Py, Juu, D, K,;) when F(u) = A,

The linear equation (1), unlike the nonlinear one (lg), admits a new symmetry
operator: I = ud,, so that (1) is invariant under the algebras (P, J,,,I) for m #£ 0
and {Py, Juv, I, D, K,;) for m = 0. However, until now, reductions of (1) have been based
only on subalgebras of (P, J..u} and (P, Ju,, D, K.). In this paper we take the subalgebra
{P., ) in both cases, it allows us to reduce the hyperbolic equation (1) to the parabolic
heat equation and, in this way, we are then able to exploit the exact solutions of the heat
equation to construct sofutions of the wave equation.’ This is the centra] result of our paper,
It may at first sight seem rather sirange that a Poincaré-invariant equation is reducible (with
an appropriate ansatz) to one that is Galilei-invariant. However, it is known (see [5]) that
the Galilei algebra can be found within the Poincaré algebra, so that one may even expect
the original equation to ‘contain’ a Galilei-invariant one.

2. Reduction to the heat equation

In this paper we limit ourselves to (1 + 3)-dimensional time-space R(1,3), but the
generalization of our result to higher dimensions is obvious as the reduction remains the
same. :

‘We now turn to the construction of the ansatz which reduces (1) to the heat equation.
Equation (1) is invariant under the operators P,,, I and is therefore also invariant under any
constant linear combination of them: -

T#8, + kud,

where k, ¥ are constants. This latter operator then gives us the following invariant-surface
condition )

thu, = ku
which gives the Lagrangian system

dx, du

T, ku
and it is not difficult to show that this, in turn, is equivalent to the Lagrangian system

d{ex) du

= @

cT ku
for any constant four-vector ¢, with cx = c*x,, ¢t = c¢¥1,. Choose now 7 so that
1?2 = t#7, = 0, namely v is light-like, and choose four-vectors 8, 8, € so that
2 m?

=—7  B=ti=pi=fe=bc=0 re=l (5

pr =8 =-1 €
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On choosing ¢ in (4) to be 7, 8, §, ¢ we obtain the system
d(zx) d(Bx) d(éx) _dlex) du

o 0 o 1k ©®
The general integral of (6) is given by
u = " Py(zx, Bx, 5x) (7

where v is a smooth function of its arguments (we assurne that all our operations are smooth,
at least locally). Treating (7) as an ansatz for equation (1), we find, on substituting (7) into
(1), writing ¢ = ©x, y1 = B, y» = 8x, performing some elementary computations and
using (5), that v satisfies the linear heat equation (we have chosen k = % for convenience)
dv v 3%
3t~ 8y? = dyy

The Cauchy problem for equation (8) is well posed for ¢t > 0, and (8) has solutions
which are singular for ¢ = 0. This then leads to a similar problem for the wave equation
when zx = 0, which is a characteristic (z2 = (), so that the initial-value problem for (8) at
t = 0 is related to the initial-value problem of (1) on a characteristic. This latter is known
as Goursat’s problem, and has been studied in [12], to which we refer the reader for more
details.

The linear heat equation in (1 + 1) spacetime dimensions has been studied extensively:
its symmetry properties [2, 6,7} and its conditional symmetries (also known as non-classical
symmetries [6], @-conditional symmetries in [2]) are known. The symmetry algebra of the
linear heat equation in 1 + 2 timespace can be found in [7] but for the sake of completeness,
we give it in the following proposition.

@)

Proposition 2. The maximal Lie point symmetry algebra of equation (8) is the extended
Galilei algebra AG:(, 2) with a basis given by the following vector fields

T=3 P, = -3, Go = td,, — 2y,08, M =—1v3,
Jio = y18y, — Y28y, D =218, + 318y, + y29y, — v9, ©
S =128, + tndy, + tyady, — ¢+ L+ 32wl
Remark I. We have not included the symmetry » — v--v; where vy is an arbn:rary solution
of (8).

If we had considered equation (1) in (1, 4), then we would have obtained the linear
heat equation in 1+ 3 dimensions with our reduction. Note also that there is a Lie-algebraic
reduction of (1} in R(1, 4) to equation (1) in R(1, 3), which amounts to omitting dependency
on one of the spatial variables. In this way, we are able to use the wave equation in R(1, 4)
as a bridge in constructing solutions of the wave equation in R(1, 3} from those of the heat
equation in 1 - 3 dimensions.

The invariance of equation (8) under the group G2(1,2) which the above algebra
generates then allows us to obtain a nine-parameter family of exact solutions whenever
one solution is given.

The commutation relations of the algebra (9) are

[Py, Gp) = dapM [Pr.Jial =P [Pz, J12] = —

7 [P, D]=PF, [Py, 8] =Gy [P, T1=0 M, X]=0forall X € AG3(2)
[Ga, G311 =0 [D,G.l=G, [T,Ga]l = Pa [S, G} =0

[J12, T] = [J12, D] = [J12, $1 =0 [T,Dl=2T [T,8]=D [D, §]1=25.
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Clearly, we see that the subalgebra (P;, G4, M), a = 1, 2 is an ideal (maximal and solvable,
and therefore the radical of the algebra [8,9]). Our algebra is seen to be the semi-direct
sum {Jo, 8,7, D) -+ (P, Gz M). In turn, we can verify that (5, T, D} is a semi-simple
Lie algebra which we can take as being a realization of ASL(2, R), the Lie algebra of
SL(2,R). To see this, we take X; = 1D, X2 = 5(T — ), X3 = 3(T + §) as a new basis,
and obtain the commautation relations of SL(2, R):

X1, Xo]l=—-X;5 [X2, X3] =X [X3, X1 = X5,
Thus we obtain
(J12, $, T, D} = (J12) ® (5, T, D} = (J12) ® ASL(Z,R)

which is the Lie algebra of 0(2) @ SL(2, R).

The elements of the group G,(1, 2} are considered as transformations of a space with
focal coordinates (7, yi, ¥2, v), and points with these coordinates are mapped to points
(¢, ¥, ¥3, v). The finite transformations defining this action are obtained by solving the
comresponding Lie equations. For the subalgebra (J12, S, T, D) = {J12, X1, X2, X3} we
solve the Lie equations as follows:

dr dy} dys dv'
Jipi—=0 -t =~y =2 =y — =0
12 dp ap Y2 dp N dp
Plomo=1  Yalo=0=1Ja Vlp=0 = v
which gives the finite transformations
Y=t Y{ = Y1008 0 — yz5inp Yo =y15inp 4+ y;c05p v =v.
Then we have the corresponding equations for Xy, X2, Xa.
evlfzt + 0 ) v,
ey St 0 Y N S )
X1:t=e t_()-t-}-e-”l/? ¥, = ey, A EPeY vV=¢ v
¥ _r,_tcoshvg_+sinhv2 . Ya
2*° T Ysinh v - cosh vy Yo = tsinhyy + coshv;
: (3i +33) sinh v
' = v(z sinh h
v' = v(¢ sinh v, + cosh v3) exp (40 Sith v, + cosh o)
¢ cos vz + sin
X3 . tr — 3 + v3 ; — J’a

" cosvs —tsinvy

(¥* + ¥2) sinva
4{cosvs — tsinva) /

cosvy — rsinvg

v' = v(cos vz — £sin v3) exp (—

Thus, we see that the action of the group generated by (Ji5, S, T, D) can be given in
the form

,_$t+n ,“ylscosp—ygasinp ;__ Y18inp + ycos p
T kt+o = kt+o 2 kt+o
k(yf +3)
! = (k1 BT WL 1.4
vV =k +a)vexp(4(xt+g)

with {0 — ne = 1, and £ = %1 corresponds to the possibility of space reflections under
which (8) is manifestly invariant (the group O (2) has two components). The parameters I,
n, &, o correspond to the action of SL(2, R).
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Solving the Lie equations defined by each of the othef infinitesimal generators in (9),
we obtain finite transformations such that (¢, y;, y2, v) = (', ¥1, », v') as follows:

Gi:t' =t ¥ = it + ¥ y}=yj for j=£i
1 [ u?
v = vexp (——2— (?’t +1L;'J’i))
Pt =t Vi=yi— X ¥i=y; for j#£i v =v
Mt =t Y=y v = vexp(—~16).

3. Subalgebras and ansatzes

Having obtained and discussed the symmetry algebra of equation (8), we now pass to listing
the subalgebras of AG,(1,2) which are inequivalent up to conjugation by Ga(1, 2), and
giving the corresponding reduced equations. In those cases where it is possible, we integrate
these equations. The method of obtaining subalgebras up to conjugation is described in
i4,10]; here we simply present our results. The reductions we have obtained have been
verified with MAPLE.

3.1. Reduction to ordinary differential equations by two-dimensional subalgebras

Here we list the subalgebras, with restrictions on any parameters entering into the algebra,
and then we give the corresponding ansatz and finally the differential equation which arises,
with its solution. In all the cases, we can take the real and imaginary parts of the solutions,
as the reduced equations are linear. This is understood when complex arguments appear,

3.1

(P, T +aMi{a=0,%1): v = e % y(w) W=7y
¢+ top=0. 7
Integrating this reduced equation, we find the following cases

¢=Ciw+Ca fore =0

¢ =Crexp (%) + Csexp (u%) fora = =1

)
= C|cos ——+C) foree = 1.
¥ 1 (ﬁ 2

From these we cbtain the: following exact solutions of (8):

v=0C1y:+Cq forae =0

v = ef? (C ex (-‘1) + Crex (—E)) forer = —1
I p q/i 2 P ﬁ

v =e"*2Cy cos (}Jl_i + Cz) foree =1

with Cj, C; being arbitrary constants.
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312
(D + Qo+ DM, THa eR) : v=y7"PPpw) o= %
(@ + 1)§+ 5+ 20)o¢ + G+ o) +a)p =0.

For o = —% we have
¢ =Ciw+Cs.

o= -—% then

¢ = Cyarctan & + Ca.
For o #£ —%, —% then

p = Ci{1 + &*y @2 cog((3 + o) arctanow + Cy).
The exact solutions being:

ol

v=Ciyr+Coya o=-

v=C;arctan—$3+C2 L o= —
1

v =Cy (3} + y3) /¥ cos ((% + ) arctan% + Cz) o -2, -4,
1

b

3.1.3.

—mn

(D+{@a+ DM, P ack): v =t~ @3Ny w

-~ |3

406+ Q2+ wg+C +a)p=0.
If we make the transformation @ — § = —% in this ODE, we obtain
"+ (3-89 —(e+e=0
where ¢’ denotes differentiation with respect to £. The solutions of this equation are given

in terms of the Pochhammer-Barnes confluent hypergeometric function (see for example
vol 1, ch 6 of [11])
(@)nz"

®(a; b;7) = Z(b) -

with & # 0 and where (a), = a(a +D@a+2)---(a+n-—1),n2 1 Wefind then [11]
¢ =C10+ 3 L — 1)+ G(-1) 0@+ 3 3; - Lo).
Thus we find the exact solution

3 2 2y 1/2 2
R e B S R 5]

3.1.4.
32

(G1, P} : v =exp (--—‘-) 1) w=1t @A =0
4t ‘ "

which integrates to give the exact solution

V= Clt[‘mexp( :;)
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3.1.5.

] £3
(P, T+ Gy U=3XP(E—‘ZL) @ (w) w=1>—2y

16¢ — weg =0.
To treat this ODE, first write ¢ = /wr(z) with z = w*?2/6. Then 1 satisfies

1

w”+;w’— (I + —)g{r 0
which is the equation for the Bessel function Ji)/3(iz) (these two are linearly independent
solutions} (see vol 2, section 7.2.2 of [11]). Consequently, we have

t3 t i r2 -2 3/2 3 t2 -2 3/2
v = (2 = 2y) P exp (E _ %) [C1 i3 ((____B)L) + Cadoyys (1_(__63’1_)_)}

as an exact solution of the heat equation.

310

{(Ja+ oD —c@dp+2)M,T) («>0pgeck)

1
v=0f+3p@)  o=oarctn (%) +5 67+
2

(@ +1)¢ + 489 + 480 = 0. '
Integrating this equation, we obtain

p=Ciw+C for g =0

@ =Crexp (— 2'8&)2) COS ( 20per + Cz) for B £ 0.

and

THa 1+ o2
These then give us the exact solutions

v = O [a arctan (%) —In(y1 + ¥; ] +Cy for 8 =0
2

v=C1(yi+yHP exp (— ﬁwz) cos ( 2ape + Cg) for 8 # 0

1+ o 1+ e?
where
84| L 2, 2
o = qarctan [ = | 4+ = In(y? + y2).
ya 2
3.1.7.
(J!z+2aM,D—(4‘3+2)M}( «>0,feR)
- 2 2
v=1fexp (a arctan y_) (W) o= ':‘)’2

2 2
25 ol W SR D
w<0+(m+4)§0+(4 4)€0—-0-

This equation gives

. 11y o« B .
¢+(z+5)<"+(m‘a)¢-°-
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Its solutions can be given in terms of Whittaker functions W(k; m; z) (see vol 1, ch 6,
pp 248-51 of [11]) and ane obtains
—uw/8

e i o
=7 ( (B+1/2: 5 )
and hence

: rﬂ+l/2 ) 2 2 . 2 2
N = ——-———q—-—-exp ("M) exp (aa:ctan.‘)yil,) W (__(3_[_ 1/2); %; yl +y2) .
2

/ }’[2 + }’% 8t 4t

3.18

{(Jiz+2aM, T+ M) {(¢=0,=0,%1)
v = exp (urarctan%l - 'ﬁ;) @{w) W=y + y2
2

2
2% oot [+ B2y =
mfp+wga+(4 + 8)40—0.

We have the following cases:
o=0C+Clogw forea=8=0
¢ = C1cos (—-%logw+ Cz) fora#0,8=0

§0=-fm(\/§?§) foree20,8£0.

Consequently, we have the following solutions of (8)
v=C1+Calog(y?+y2) fora=8=0

v = exp (a’ arctan " ) Cicos (——log(yl -+ yz) + Cz) fores£0,8=0
;)

v=exp(aarctan%1~—%-).fm (1fﬁ(y1:y) ' forae>20,8+£0.
2 0

3.1.9.
(24 8+ T +2eM,G + P)) (@ €R)

2 2 2
v=(z2+1)‘”zexp[(1 d )(}‘I‘Hh) —zl—marctant]ga(w) o= T2

4t 241 4¢ 2+1
¢+ (@ +oNp =0.

This equation is known as the Weber equation. Its solutions are the real and imaginary parts
of the functions -

D_ (£ + D)

where D,(z) are the Weber—Hermite (parabolic cylinder} functions (vol 2, ch 8, section 8.2
of [11]). This gives the following exact solutions of (9):

- 1—2\ fn+mn) %
= (2 4 112 ( 2
v=_0"4+1) exp o PO o o arctan ¢
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Wkt
xD_z (ﬂ:(1+1)y;2+ fz)

and the real and imaginary parts of this funcuon give us exact solutions of the heat
equation (9).

3.1.10.
{J12+2aM, S+ T +28M) =z0,8cR)
- t0f + 33) i+
v=(2+1)"12 [ tant 4 tan 2L - L1 T Y/ _Naty
( ) _exp B arctant + « arc oI (w) w poa

1 1 B o
§0+—§0+(16+4 +m)¢?ﬁ0
The solutions of this equation can be given in terms of Whittaker functions [11], and we
obtain the following exact solutions of the heat equation as a result;
v= (3’12 -+ )’%)"”2 exp [ Barctant + o arctan% tg;z-:_};))] W (Igﬁ 12a: %)—)
In the above cases we have been able to describe exact solutions of (8) in terms of
. elementary functions or confluent hypergeometric functions. Using the notation introduced
in equations (8) and (7), we are thus able to construct strikingly new exact solutions of the
linear wave equation (1).

3.2. Reduction to partial differential equations by one-dimensional subalgebras

Here we list the subalgebras, the relevant parameters, ansatzes and reduced equations,
without constructing their exact solutions. We use ¢ to denote the partial derivative with
respect to @y, and ¢ means the second derivative with respect to w3, and so on.

3.2.1.
(P} : v=glo,w) - o=t w2 = Y| o1 = ¢

This is the heat equation in I + 1 spacetime dimensions. The symmetries and conditional
symmetries of the heat equation are well known. A discussion of these can be found in [6]
and in appendix 7 of [2].

3.2.2.
2
{(Gi+ P : U =exp (—Z—') plw, w2) w =t wr =y1+ 1ty
1
1 2 - — —py — — 0.
(I 4+ o)pn — o1 ﬁﬂz o @ =
3.2.3.
ot
{TH+aM)(w=0,=31): v =exp (_7) (e, w2) w =¥ w2 =¥

@11+ g2+ %0590 =0.
This equation is the Laplace equation for ¢ = 0. Solutions can be obtained by using
separation of variables.
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3.2.4
(T +G1): v=expl e =5 olen, wa) @ =" =2y
411 + o — so1p = 0.
3.2.5.
{(Ji2+ 200M} (e 2 O)
v = exp (oz arctan %:-l-) @y, w2) 0 =y 4 yE 0=t
2
4wf§011 +dengr + oz + azga =0.
3.2.6.
(f]z-i- T +2(YM)(GI < R)
v = exp{—eit )i, an) Wy = yl2 + y%, w7 =t + arctan il-
dwlpir + @ + 4o — @1)@2 + awp = 0.
3.2.7.
(fa+5D+a028 - DM)@>0,8>1/2)
- _ 1
v =1t glw, @) wl—logr-I—aarctany—
2
o1 + 4030n ~ w01 + (dewy + 0Dy + Bang =0.
3.2.8.
32
(D+ (4o —2)M) (e 2 1/2) : v=t""p(w;, w) W = —:—
4o + denpn + 2+ w1)er + Q@+ odg +ap =0.
3.2.9,
(S+T+aJu+28M){(x>0,8eR)
2 2
2 -1/2 t(yy + ¥
= (I 1 — tant — ———==
v=_(*+1) exp[ B arc A1) ¢(@1. en)

2 2z
+
w1=y‘ yz,w2=arctan~)2+aarctant

> +1 Y2

1 Wy
4 —on + 4y — 20) p =0
o+ gz + 4o ap+(B+3) e =0

w2 =¥
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3.2.10.
(S+ T +2M) (e e R)
- t(y}+y3)
=%+ 1)"Y?exp |~ arctans — —2L -2 )
v= ) p | —e arctan P o1, w2)
2 2
= =2
SR = Er
W +w
4oy +dangn + 20y + 29, + (a + —~14—2) @=0.
3.2.11.

{8 +T -+ iz + (G + P)Ma > 0)

11— +tn)? ¥

(1) Mexp) & — 2 ‘

V=D e e 4 | Pl @)
Y1 +iy2 nh—y

Y =TT Q=Ee T

o+ pn — Qo — o)e; + wlp = 0.

4. Some conditional symmetries of the 2 + 1 heat equation

In this section we give the conditional symmetries of equation (8). The defining equations
are nonlinear coupled partial differential equations, which we do not solve, except in one
case, leaving the others for consideration in a later publication. We have the following
result.

Praposition 3., Equation (8) is conditiona.lly invariant under

X= s“ +.§‘ +§2—-—+

o
when the coefficients sat;sfy the follomng conditions:
W&=1: & =&, =5  n1=4v+B

where £1, £2, A, B are functions of ¢, y, ¥; and satisfy the system
£l +2E'E) 424, =0 & +28%] +24,, =0,
Ay = Ay + Ay, — 2A§§,’2 B; = By, + B,,;, — Bgi.
@& =0¢t=1: g =£% p=Av+B ‘
where £%, A, B are functions of t, ¥, y; and satisfy the system
& — ym ‘Eym +2§y1 Eyz — 254y, - ZA%?: =
Ap = Apy, + Ayy, + 244, — 24,82 "
B, = Byy, + Byy, +2BAy — ZByzE;-
(i) E°=£'=0,82=1:n=Av+B
where A is a function of £, y2 only, and B is a function of ¢, y1, y» and satisfy the equations
Ap = Ay, +2AA,, B, = Byy, + By, +2BAy,.
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As is clear in the above three cases, the systems of equations involved are highly nonlinear,
and cannot be solved in general. However, the equation for the function A in case (iii) is
recognized to be the Burgers equation. This equation can be linearized by the Hopf-Cole
transformation A = w,,/w where w is a solution of the heat equation w, = w,,,, (see for
example [2]). The solutions obtained in this way can then be used to build ansatzes first for
the 241 heat equation (8) and then, in turn, the linear wave equation (1), using the ansatz

(7).

Ansatzes can also be obtained from the symmeiry algebra of the Burgers equation.
Indeed, the symmetry algebra of the equation

A; = Ay, +24A,, (10)
is generated by the operators
B¢, By, 218y, — 34 210y + Y28y, — ABa

2 a2
128, + £y;0, GA+2)m. (1
The operator (11) gives the ansatz
= L »
=3+ 7v(¥) a2
which gives, on substituting into (10), the equation
¥+ 29 =0 '

for vr, where the dot denotes differentiation with respect to the variable @ = y/¢. This
equation readily integrates to

y+yi=c
where ¢ is a constant, This gives us three cases:
c=0: Y =t/ (kt + ) (13

where k is a constant.

c=a*,a>0: 11f=a(lexp(@)—1)/(le:xp(g%}—’-2-)+l) (14)

with [ # 0 a constant.

c=-a’,a>0: 1}r=—atan(a2—|-at£). (15)
Substituting these into (12), one obtains exact solutions of (10). 'We use these exact solutions
for A together with theorem 3 (iii) (with B = 0) as follows. The equation (8) is conditionally
invariant under

By, + Avd, (16)

and this gives us an ansatz for v to be substituted into (8), and this, in turn, gives us an
exact solution of (8) which, when we combine it with (7), gives an exact solution of (1).
We list the results of these stages for each of the equations (13)-{13).
The ansatz for v from (13) is
v = (&t + y2) exp(—y3 /A)D(t, y1)
where ®(z, y) satisfies
P, = (pJ’U’l -

3
£
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and consequently we find that v is given by
v = (kt + yp) exp(—y; /4 ~ 3t/2)W (2, Y1) 17

where W(z, y1) satisfies the (1 -+ 1)-dimensional heat equation.
The ansatz for v from (14) is

v = %/ [] exp(—(y2 — 2a)?/4t) + exp(—(yz + 2a)* /41D (2, Y1)
where $(z, y1) satisfies

1 &
q):+ (E—}E)¢= d)}’]JF]

and using this we eventually find that v is given by
1
v= W[ze@z/‘ + &/ exp(—(4a® + y3) /AT, y1) (18)

where W{¢, y1) satisfies the (1 4 1}-dimensional heat equation.
The ansatz for v from (15) is

v =08 (az + %) exp(—y§/4t)cp(r, ¥

where ®{t, y1) satisfies

1 &
‘I’:+(E"}E)¢= Py
$0 that we obtain }
1 aya
v=zcos (a2 + T) exp(—(4a® + y2) /4 (2, y1) (19)

where W(z, y;) satisfies the (1 + 1)-dimensional heat equation.
We can now combine equations (17)-(19} with equation (7) to obtain new solutions of

(1):

R _
u = [k(tx) + (§x)] exp ((ex) @x)° _ 3(x)

2 4tx) 2

) W((zx), (Bx))

_ 1 ARy (e3) | a6z ((ex) _ (4a> + (535)2))

U= = [le +e Jexp > promses W((zx), (Bx))
1 2, a(dx) (ex) (4a®+ (3x)?)

k= ;\/{_‘E‘J_Cj cos (a + (‘L’x) ) CXp ( 2 4(rx) ) \F((rx), (ﬁx))

where (¢, x) is any solution of the (1 + 1)-dimensional heat equation.

One can, in principle, perform the same procedure for the other conditional symmetry
operators defined in theorem 3; however, it is first necessary to obtain some exact solutions
of the systems. These latier are quite nonlinear and require further treatment, and we leave
this to a future publication.

5. Conclusion

We have been able to give a new reduction of the linear wave equation in 1 43 timespace
dimensions to a linear heat equation in 142 timespace dimensions, that is, a reduction of a
hyperbolic equation fo a parabolic one. The further reductions of this heat equation by two-
dimensional subalgebras (inequivalent under the action of Ga(1, 2)) to ordinary differential
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equations leads to exact solutions in terms of special functions. These are of interest in
their own right. Conditional symmetries can also be used to obtain new exact solutions.
Using these solutions of the heat equation, One can construct new solutions of the linear
wave equation. In concluding, we remark that the complex nonlinear wave equation

O + F(N, 8, [ ]84 DY = 0

where F is an arbitrary smooth function of its arguments and ¥ is a complex function, can
be reduced by the same ansatz as (7) (but with £ imaginary) to a nonlinear Schrisdinger
equation with the same nonlinearity. Some of these equations admit soliton solutions. We
report on these results in [3].
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